Form Factors of Exponential Operators and Exact Wave Function Renormalization Constant in the Bullough–Dodd Model

نویسنده

  • C. Acerbi
چکیده

We compute the form factors of exponential operators e in the two–dimensional integrable Bullough– Dodd model (a (2) 2 Affine Toda Field Theory). These form factors are selected among the solutions of general nonderivative scalar operators by their asymptotic cluster property. Through analitical continuation to complex values of the coupling constant these solutions permit to compute the form factors of scaling relevant primary fields in the lightest–breather sector of integrable φ1,2 and φ1,5 deformations of conformal minimal models. We also obtain the exact wave–function renormalization constant Z(g) of the model and the properly normalized form factors of the operators φ(x) and :φ(x) : . 1e–mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Form Factors of the Elementary Field in the Bullough - Dodd

We derive the recursive equations for the form factors of the local hermitian operators in the Bullough-Dodd model. At the self-dual point of the theory, the form factors of the fundamental field of the Bullough-Dodd model are equal to those of the fundamental field of the Sinh-Gordon model at a specific value of the coupling constant. 1 The Bullough-Dodd Model The Bullough-Dodd (BD) model [1, ...

متن کامل

Angular quantization and form-factors in massive integrable models

We discuss an application of the method of the angular quantization to reconstruction of form-factors of local fields in massive integrable models. The general formalism is illustrated with examples of the Klein-Gordon, sinh-Gordon and Bullough-Dodd models. For the latter two models the angular quantization approach makes it possible to obtain free field representations for form-factors of expo...

متن کامل

Exact Traveling Wave Solutions for a Nonlinear Evolution Equation of Generalized Tzitzéica-Dodd-Bullough-Mikhailov Type

By using the integral bifurcation method, a generalized Tzitzéica-Dodd-Bullough-Mikhailov (TDBM) equation is studied. Under different parameters, we investigated different kinds of exact traveling wave solutions of this generalized TDBM equation. Many singular traveling wave solutions with blow-up form and broken form, such as periodic blow-up wave solutions, solitary wave solutions of blow-up ...

متن کامل

Solutions of Zhiber-Shabat and Related Equations Using a Modified tanh-coth Function Method

The modified tanh-coth function method is used to obtain new exact travelling wave solutions for Zhiber-Shabat equation and the related equations: Liouville equation, sinh-Gordon equation, Dodd-Bullough-Mikhailov equation, and Tzitzeica-Dodd-Bullough equation. Exact travelling wave solutions for each equation are derived and expressed in terms of hyperbolic functions, trigonometric functions an...

متن کامل

Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories

Exact expectation values of the fields e in the Bullough-Dodd model are derived by adopting the “reflection relations” which involve the reflection S-matrix of the Liouville theory, as well as special analyticity assumption. Using this result we propose explicit expressions for expectation values of all primary operators in the c < 1 minimal CFT perturbed by the operator Φ1,2 or Φ2,1. Some resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997